

Лукьянов Андрей Александрович

Кандидат физико-математических наук, доцент, сотрудник лаборатории по работе с одарёнными детьми МФТИ.

Так ли прост бытовой газовый баллон?

Для типичной температуры в помещении ($25\,^{\circ}$ C) оценены массовая и объёмная доли пропана, находящегося в бытовом газовом баллоне в жидком и в газообразном состояниях.

На сайте одной из компаний по продажам бытовых газовых баллонов автор прочитал:

Puc. 1

Газовый баллон: 27 л пропана.

Масса пропана: 11,4 кг.

Масса пустого баллона:14,5 кг. Рабочее давление: 1,6 МПа.

Толщина стенки корпуса баллона:

3 мм.

Температура эксплуатации: от -40 до

45 °C.

Возникло **сомнение:** вряд ли возможно, чтобы давление в баллоне во всём интервале температур эксплуатации от $-40\,^{\circ}\text{C}$ до $+45\,^{\circ}\text{C}$ оставалось одним и тем же (равным 1,6 МПа). Если пропан в баллоне находится в газообразном состоянии, то по закону Клапейрона – Менделеева

$$p = \frac{1}{V} \cdot \frac{m}{\mu} RT \tag{1}$$

давление должно линейно расти с ростом температуры.

Ситуация, однако, сложнее: пропан может частично перейти в жидкое состояние. В этом случае давление в баллоне (замкнутом сосуде неизменного объёма) будет давлением насыщенного пара пропана. Последнее ещё сильнее, чем (1), зависит от температуры (см. формулу (3) ПРИ-ЛОЖЕНИЯ).

Вопрос о том, каким установится давление в баллоне, — не простой (можно сказать, не школьный). Обсуждение его автор выносит в **ПРИ-ЛОЖЕНИЕ**.

Однако и школьными методами можно разобраться в вопросах, которые едва ли отнесёшь к тривиальным. Будем считать, что давление в

баллоне при температуре в обычном помещении (примерно $t=25~^{\circ}\text{C}$) мы откуда-то знаем и оно приблизительно равно

 $p \approx 15$ атм $\approx 1,5$ МПа.

Попробуем ответить на вопросы:

- 1) В каком состоянии находится пропан в баллоне в этих условиях жидком, газообразном, двухфазном?
- 2) Какая масса пропана в баллоне находится в жидком состоянии? Какую долю (в %) эта масса составляет от общей массы пропана в баллоне?
- **3)** Какую часть **объёма** баллона занимает при этой температуре пропан в жидком состоянии?

Решение

1) Предположим, что весь пропан находится в баллоне в газообразном состоянии. Каким тогда будет давление в баллоне?

Химическая формула пропана C_3H_8 его молярная $\mu = (3.12 + 8).10^{-3} = 0.044 \text{ кг/моль.}$ Для граничных температур в интервале, указанном в рекламе, $T_1 = 233 \text{ K}$ $(t_1 = -40 \,^{\circ}\text{C})$ и $T_2 = 318 \,^{\circ}\text{K}$ $(t_2 = +45 \,^{\circ}\text{C})$, вычисления по формуле (1) при m = 11.4 кг и V = 0.027 м³ дают чрезвычайно большие значения давлений: $p_1 = 18,6$ МПа и $p_2 = 25,4$ МПа. Первое из них больше «рабочего давления» 1,6 МПа (см. текст к рис. 1) примерно в 12 раз, а второе в 16 раз. При t = +25 °C давление данной массы газообразного пропана в данном объёме равнялось бы примерно 235 атм!

Вывод: если давление в баллоне порядка 15 атм (а не 235 атм), пропан в баллоне не должен находиться в чисто газообразном состоянии! Значительная часть пропана сконденсируется в жидкость. Автор, разумеет-

ся, вспомнил задачу 1.3 из превосходной книги В.Е. Белонучкина [1].

2) Введём обозначения: $m_{\rm T}$ – масса пропана, находящегося в баллоне в газообразном состоянии, $m_{\rm Ж}$ – масса пропана в жидкой фазе; $m_{\rm Ж} = m - m_{\rm T}$. $V_{\rm T}$ – объём пропана в газообразном состоянии, $V_{\rm Ж}$ – объём пропана в жидкой фазе; $V_{\rm Ж} = V - V_{\rm T}$.

Для нахождения масс пропана в жидкой фазе и в фазе пара воспользуемся уравнением Клапейрона – Менделеева:

$$\begin{split} pV_{\Gamma} &= \frac{m_{\Gamma}}{\mu}RT \implies p(V - V_{\mathcal{K}}) = \frac{m_{\Gamma}}{\mu}RT \implies \\ &\Rightarrow p\bigg(V - \frac{m_{\mathcal{K}}}{\rho_{\mathcal{K}}}\bigg) = \frac{m_{\Gamma}}{\mu}RT \implies \\ &\Rightarrow p\bigg(V - \frac{m - m_{\Gamma}}{\rho_{\mathcal{K}}}\bigg) = \frac{m_{\Gamma}}{\mu}RT \implies \\ &\Rightarrow p\bigg(V - \frac{m}{\rho_{\mathcal{K}}}\bigg) = m_{\Gamma}\bigg(\frac{1}{\mu}RT - \frac{p}{\rho_{\mathcal{K}}}\bigg). \end{split}$$

И окончательно

$$m_{\Gamma} = \frac{p\left(V - \frac{m}{\rho_{K}}\right)}{\left(\frac{1}{\mu}RT - \frac{p}{\rho_{K}}\right)}.$$
 (2)

Подстановка числовых значений $p=1,5\,$ МПа, $T=298\,$ К ($t=25\,$ °C), $V=27\,$ л $=0,027\,$ м³, $m=11,4\,$ кг, $\rho_{\rm ж}\,(T=298\,$ К) $\approx 490\,$ кг/м³ (плотность жидкого пропана при $T=298\,$ К; см. таблицу 1 ниже), $R=8,31\,$ Дж/(К· моль) дает: масса газовой фазы $m_{\rm T}\!\approx\!0,1\,$ кг (что составляет менее 1% от общей массы пропана в баллоне); для жидкой

фазы пропана имеем $m_{\rm H}$ = $m-m_{\rm I}$ pprox pprox 11,3 кг (что составляет более 99% от общей массы пропана в баллоне).

3) Для объёма жидкой фазы име-

ем:
$$V_{\text{ж}} = \frac{m_{\text{ж}}}{\rho_{\text{ж}}} \approx 0{,}023 \text{ м}^3 = 23 \text{ л, т.е.}$$

жидкость занимает более 85% объема баллона; на газообразную фазу остаётся менее 15%.

ПРИЛОЖЕНИЕ

для учителей и учащихся физ.-мат. школ

Почему автор взял давление 1,5 МПа (примерно 15 атм) для температуры 25 °С (298 К)? У него было не слишком много экспериментальных данных. В Интернете он нашёл плотность жидкого пропана в ин-

тервале температур от $-25\,^{\circ}\mathrm{C}$ до $+25\,^{\circ}\mathrm{C}$ (см. таблицу 1), а в книге [3] нашёл таблицу значений температур насыщения пара пропана в интервале давлений от 0,1 до 100 кПа (см. таблицу 2).

Таблица 1. Плотность пропана в г/см³ (из Интернета [2]) при разных температурах в °C

-25	-20	-15	-10	-5	0	5	10	15	20	25
0,559	0,553	0,548	0,542	0,535	0,528	0,521	0,514	0,507	0,499	0,49

Таблица 2. Значения температуры, при которой устанавливается указанное давление насыщенного пара пропана [3]

р, кПа	0,1	0,2	0,5	1	2
Т, К	141,8	147,4	155,6	162,4	169,9
р, кПа	5	10	20	50	100
Т, К	180,8	190,1	200,4	215,8	229,2

Приведённому в таблице 2 интервалу давлений соответствует интервал температур T=(142-229) К, т.е. t=-(131-44) °C, который не перекрывается с интервалом температур в табл.1. Нас, к тому же, интересует третий интервал: от -40 °C до +45 °C (см. «температуру эксплуатации» к рис. 1).

Для нахождения давлений в этом интервале автору пришлось воспользоваться таблицей 2 и решением уравнения Клайперона – Клаузиуса

для давления насыщенного пара над жидкостью (см., например, в книге Д.В. Сивухина [4]):

$$p(T) = p(T_0) \exp\left(\frac{\mu \cdot q}{R} \left(\frac{1}{T_0} - \frac{1}{T}\right)\right), \quad (3)$$

где q – удельная теплота парообразования пропана. Это – уже не школьная формула (без интегрирования её не получить).

Значение q автор тоже не нашёл в справочниках или в Интернете. К счастью, в этом нет нужды: по двум

давлениям для двух температур $p(T_1=216~\mathrm{K})=50~\mathrm{k\Pi a}$ и $p(T_2=229~\mathrm{K})=100~\mathrm{k\Pi a}$ (см. таблицу 2) легко находится важная комбинация $\mu\cdot q/R$:

$$\frac{\mu \cdot q}{R} = \frac{\ln \frac{p(T_2)}{p(T_1)}}{\frac{1}{T_1} - \frac{1}{T_2}} = \frac{\ln 2}{\frac{1}{216} - \frac{1}{229}} \approx 2640 \text{ K. (3')}$$

Далее по формуле

$$p(T) = p(229) \exp\left(2640\left(\frac{1}{229} - \frac{1}{T}\right)\right)$$
 (3)

определяем давление насыщенного пара пропана при разных температурах:

$$p(T=233 \text{ K } (t=-40 \text{ °C})) \approx 122 \text{ кПа}$$
 $(\approx 1,21 \text{ атм}),$ $p(T=273 \text{ K } (t=0 \text{ °C})) \approx 640 \text{ кПа}$ $(\approx 6,35 \text{ атм}),$ $p(T=298 \text{ K } (t=+25 \text{ °C})) \approx 1,44 \text{ МПа}$ $(\approx 14,3 \text{ атм}),$ $p(T=318 \text{ K } (t=+45 \text{ °C})) \approx 2,51 \text{ МПа}$ $(\approx 24,9 \text{ атм}).$

Видно, что давление в баллоне очень сильно изменяется при изменении температуры. Для граничных температур эксплуатации ($-40\,^{\circ}$ С и + $45\,^{\circ}$ С) давления пропана в баллоне отличаются более чем в $20\,$ раз.

Ближе всего к значениям из рекламы была «точка» p(T = 298 K) $(t = +25 \, ^{\circ}\text{C})) \approx 1,44 \, \text{M}\Pi \text{a} \, (\approx 14,3 \, \text{arm}).$ В какой мере можно доверять вычисленному значению давления? Не чересчур (разумеется, не трём значащим цифрам). Интервал температур от $-40\,^{\circ}$ C до $+45\,^{\circ}$ C (даже до $+25\,^{\circ}$ C) очень широкий, и формула (3) вряд ли будет хорошо «работать» во всём этом интервале. (В аналогичной задаче о давлении насыщенного водяного пара различия экспериментальных и теоретических давлений, найденных по формуле (3), в интервале температур от +7 °C до +90 °C могут достигать 15%.) Именно поэтому автор положил приближённо $p \approx 1.5 \text{ M}\Pi a$.

Литература

- 1. Белонучкин В.Е. Краткий курс термодинамики. Долгопрудный, 1994. 181 с.
- 2. http://invertory.ru/voprosy-i-otvety-po-gazovym-convektoram/-Значения плотностей жидкого пропана для температур в интервале $-25\,^{\circ}\mathrm{C}$ до $+25\,^{\circ}\mathrm{C}$.
- 3. «Физические величины» / под ред. И.Г. Григорьева и Е.З. Мейлихова. М.: Энергоатомиздат, 1991. 1232 с.; см. стр. 276 Значения температур насыщения пара пропана в интервале давлений от 0.1 до 100 кПа.
- **4.** *Сивухин Д.В.* Общий курс физики, т. II «Термодинамика и молекулярная физика». М.: Наука, 1975. 552 с. (см. §114).

Юмор Юмор Юмор Юмор Юмор

Бесспорное доказательство

Один из дофинов (наследников королевского престола) Франции никак не мог понять из объяснений своего учителя, почему сумма углов треугольника равна двум прямым углам. Наконец, тот воскликнул: «Я клянусь Вам, Ваше Высочество, что она им равна!» — «Почему же вы мне сразу не объяснили столь убедительно?» — спросил дофин.