

Лукьянов Андрей Александрович

Кандидат физико-математических наук, доцент, лаборатория по работе с одарёнными детьми МФТИ.

Мостовая схема

Рассмотрен ряд теоретических и экспериментальных задач на мостовое соединение резисторов (но не только их), которое широко используется для экспериментального определения неизвестных сопротивлений резисторов. На конкретных примерах показаны приёмы расчёта сопротивлений и токов в схеме, а также методы анализа экспериментальных данных, полученных, например, с помощью бытового мультиметра.

В настоящей статье мы продолжим рассказ о работе Олимпиадной школы при МФТИ по курсу «Экспериментальная физика» (сайт школы http://edu-homelab.ru/). Хотя наша школа принципиально ориентирована на эксперимент, но опыта никогда не бывает без анализа того, что получено в нём, и без попыток предсказать, что можно было бы ожидать, т. е. без теории. Сегодня теории будет больше, чем эксперимента. Причина этого и в том, что мостовая схема, о которой пойдёт речь, - вещь не очень простая, особенно – для школьников. Иногда считают даже, что для анализа её работы нужна «высшая физика» (так называемые законы Кирхгофа). На самом деле многое можно понять школьными методами.

Мостовой схемой называют следующее соединение резисторов.

Пусть между точками 1 и 4 включены последовательно два резистора R_1 и R_3 (назовём их верхним «берегом»), а параллельно им между этими же точками 1 и 4 включены два последовательно соединённых резистора R_2 и R_4 (назовем их нижним «берегом»). Пусть точка 2 – какая-то точка провода, соединяющего резисторы R_1 и R_3 , а точка 3 – какая-то точка провода, соединяющего резисторы R_2 и R_4 .

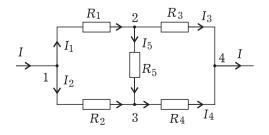
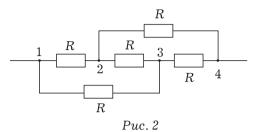


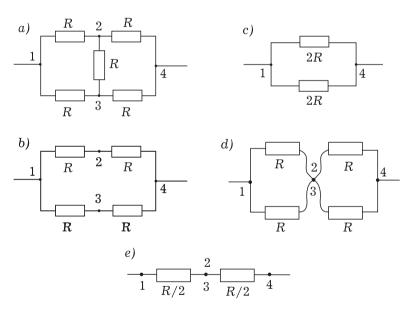
Рис. 1. Мостовая схема

Между точками 2 и 3 делают перемычку - включают резистор сопротивлением R_5 , «строят между берегами мост» (см. рис. 1), после чего схема соединения резисторов перестаёт быть простой комбинаиией последовательных и параллельных соединений. «построения моста» резисторы R_1 и R_3 уже не могут считаться соединенными последовательно (в точке 2 имеется ответвление!), а резисторы R_1 и R_2 , уже не могут считаться соединенными параллельно (так было бы, если бы точки 2 и 3 совпадали друг с другом или были бы закорочены).

Прежде чем переходить к лабораторной работе (см. задачу 5), ближе познакомимся с работой мостовой схемы. Сначала – несколько задач.



Задача 1. В схеме рис. 2 все пять сопротивлений равны друг другу и равны R. Определите сопротивление между точками 1 и 4.



Puc. 3

Решение. Перерисуем схему рис. 2 в виде рис. 3 а. Видно, что мы имеем дело с симметричной мостовой схемой. Ясно, что потенциалы точек 2 и 3 равны в силу симметрии *задачи* (верхний «берег» ничем не лучше и не хуже нижнего «берега»). Поэтому, если приложить напряжение между точками 1 и 4, электрический ток через перемычку не потечет, и её можно просто отбросить. В результате имеем два параллельно включённых друг с другом «берега» с сопротивлениями 2R каждый (см.

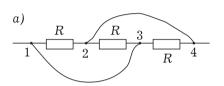
рис. 3, b - c). В результате

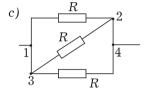
$$R_{14} = \frac{2R \cdot 2R}{2R + 2R} = R.$$

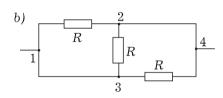
Можно было рассуждать и иначе. В силу равенства потенциалов точек 2 и 3, объединим эти точки в одну. В результате получаем две пары параллельно соединённых резисторов (R_1, R_2) и (R_3, R_4) ; здесь и далее нумерация резисторов, токов в схеме такая же, как на рис. 1. Сопротивление каждой пары равно $\frac{R \cdot R}{R + R} = R/2$ (см. рис. 3, d - e).

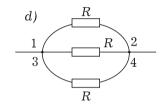
Эти пары включены последовательно друг с другом, в итоге снова получаем

$$R_{14} = R/2 + R/2 = R.$$





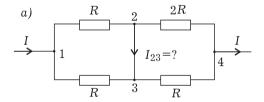


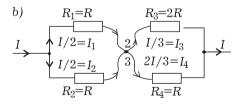


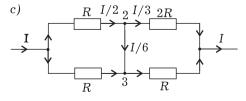
Puc. 4

(*) Задача 2. В схеме из трёх последовательно соединённых резисторов закоротили две пары точек: 1 - 3 и 2-4 (рис. 4 a). Определите сопротивление между точками 1 и 4.

Решение. Точки 1 и 3 имеют равные потенциалы, поскольку напряжение на концах равного нулю сопротивления R_2 равно нулю в силу закона Ома $\varphi_1 - \varphi_3 = R_2 I_2$ (напоминаем: нумерация резисторов и точек в схеме такая же, как на рис. 1); аналогично - для точек 2 и 4, соединённых равным нулю сопротивлением R₃. Совмещая точки 1 и 3, а также 2 и 4 (на рис. 4 b – d показано поэтапное сближение точек 1 и 3 (и 2 и 4)), получаем три одинаковых резистора $R_1 = R_5 = R_4 = R$, включённых параллельно друг другу. В результате $\frac{1}{R_{14}} = \frac{1}{R} + \frac{1}{R} + \frac{1}{R} = \frac{3}{R}$, T. e. $R_{14} = R/3$.







Puc. 5

Задача 3. В несимметричной мо-

стовой схеме (рис. 5 a) точки 2 и 3 закорочены (сопротивление «моста» $R_5=0$). Остальные сопротивления таковы: $R_1=R_2=R_4=R,\ R_3=2R.$ (Снова нумерация точек, резисторов и токов в схеме такая же, как на рис. 1.) К схеме подведён ток I. Найти ток между точками 2 и 3.

Решение. Временно мысленно совместим точки 2 и 3 (см. рис. 5 b). В результате имеем две пары соединённых друг с другом параллельно резисторов (R_1, R_2) и (R_3, R_4) . $R_1 = R_2$, поэтому токи $I_1 = I_2 = I/2$.

В другой паре резисторов $R_3=2R_4$, поэтому $I_4=2I_3$ (при параллельном соединении токи в резисторах обратно пропорциональны их сопротивлениям). В сумме токи I_3 и I_4 дают полный ток I. В итоге $I_3=I/3$ и $I_4=2I/3$.

Возвращаемся к «мосту» конечной длины (рис. 5 a и рис. 5 c). Ток через перемычку I_5 (он же ток I_{23}) может быть найден из одного из двух условий (безразлично, какого именно): либо а) $I_1 = I_5 + I_3$, (сумма токов, входящих в узел 2, равна сумме токов выходящих из него), либо б) $I_2 + I_5 = I_4$ (равенство сумм токов, входящих и выходящих из узла 3). Согласно а) имеем $I/2 = I_5 + I/3$, откуда $I_5 = I/6$. Согласно б) имеем $I/2 + I_5 = 2I/3$, откуда снова получаем $I_5 = I/6$.

Задача 4. Какому условию должны удовлетворять сопротивления «берегов» несимметричной мостовой схемы (рис. 1), чтобы ток через «мост» равнялся нулю?

Решение. Чтобы в перемычке 2-3 с не равным нулю сопротивлением не было тока, необходимо, чтобы потенциалы точек 2 и 3 равнялись друг другу. Это значит, что падение потенциала на сопротивлении R_1 должно равняться падению потенциала на сопротивлении R_2 , т. е. I_1 R_1 = I_2 R_2 ,

откуда получаем пропорцию $I_1/I_2 =$ $=R_2/R_1$. С другой стороны, в отсутствие «моста» между точками 2 и 3 (либо, когда по нему не идёт ток) всё сопротивление верхнего «берега» = R_1 + $+R_3$, а нижнего = $R_2 + R_4$, поэтому токи, будучи обратно пропорциональны сопротивлениям «берегов», удовлетворяют соотношению $I_1/I_2 = (R_2 +$ $+ R_4$)/($R_1 + R_3$). В итоге приходим к условию $R_2/R_1 = (R_2 + R_4)/(R_1 + R_3)$, откуда получаем более простую пропорцию: $R_1/R_2 = R_3/R_4$, или иначе $R_1/R_3 = R_2/R_4$. Это соотношение часто используется для экспериментального определения неизвестсопротивления, если остальных известны. При этом один «известный» резистор берётся переменным и экспериментально подбирается такой величины, чтобы ток через «мост» обратился в нуль (так называемая мостовая схема Уитстона).

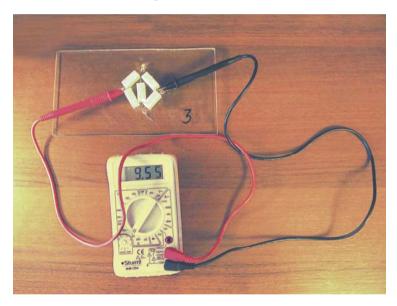
Теперь - экспериментальная задача, которая предлагалась учащимся нашей школы. Ранее она заключительном предлагалась на туре Российского этапа Турнира юных естествоиспытателей в 2014 г. Конкретные значения сопротивлений резисторов были подобраны автором такими, чтобы задача имела простое решение. (Разумеется, турнирные бойцы и учащиеся нашей школы об этом заранее не знали.) Задача № 5 «Задания на дом» (см. в конце статьи) представляет собой усложнённый вариант нижеследующей задачи.

(*) Задача 5. Известно, что в «мостовой» схеме (рис. 1) использованы четыре резистора примерно по 12 кОм и ещё один резистор примерно 4,7 кОм, про который не известно, в каком месте схемы он находится. Экс-

периментально (с помощью мультиметра, используя его в качестве омметра) определить месторасположение этого резистора в схеме. Удалять (выпаивать) резисторы нельзя.

Решение. Задача не такая надуманная, как кажется («Почему это, – мог бы подумать читатель, - нельзя выпаивать резисторы?»). Если квартире произошло повреждение электрической проводки в каком-то неизвестном месте, то надо ли вскрывать всю проводку? Вряд ли это - самый экономный способ нахождения повреждения. Опытный электрик, скорее всего, «прозвонит» с помощью (отвёрткипростого индикатора пробника) электрическую цепь квартиры и укажет место, где под штукатуркой имеется повреждение. Наша задача моделирует такую ситуацию. Мы «прозвоним» мостовую схему с помощью мультиметра.

Пусть измерения с помощью мультиметра (см. рис. 6) сопротивлений между разными парами точек схемы показали: $R_{14} \approx 9.55$ кОм (рис.6). $R_{12} \approx 7,23$ кОм, $R_{13} \approx 7,24$ кОм, $R_{24} \approx 6.24$ кОм, $R_{34} \approx 3.85$ $R_{23} \approx 5.46$ кОм.



Puc. 6

Обратим внимание на то, что $R_{14} \approx 9.55$ кОм $\neq 12$ кОм. Спросим себя: «Может ли резистор 4,7 кОм занимать место "моста"?» Разумеется, нет. Если бы он был там, то мостовая схема была бы симметричной, и её сопротивление между точками 1 и 4 равнялось бы, как и в задаче 1, просто 12 кОм. Значит, резистор 4,7 кОм занимает какое-то место на «берегах» (в одном из 4-х мест).

Наша мостовая схема (в отличие от изображённой на рис.1) не включена ни в какую электрическую цепь. Когда мы щупами мультиметра касаемся, например, точек 1 и 2 (см. рис. 1), то мультиметр показывает не просто сопротивление резистора R_1 : параллельно ему включена некая комбинация из остальных резисторов (назовем ее $R_{1\text{ост}}$). В ней резисторы R_3 и R_4 соединены последовательно друг с

другом (что дает сумму R_3+R_4), параллельно им включён резистор R_5 (получаем $\frac{(R_3 + R_4) \cdot R_5}{(R_3 + R_4) + R_5}$), а после-

довательно с ними соединён резистор R_2 ; в результате

$$R_{\text{loct}} = R_2 + \frac{(R_3 + R_4) \cdot R_5}{(R_3 + R_4) + R_5}$$

и
$$\frac{1}{R_{12}} = \frac{1}{R_1} + \frac{1}{R_{1ocm}}$$
. Мы не будем

продолжать вычисления. Заметим другое. Согласно последней формуле при параллельном подключении к резистору R_1 резистора $R_{1\text{ост}}$ имеем:

$$\frac{1}{R_{12}} = \frac{1}{R_1} + \frac{1}{R_{\mathrm{loct}}} > \frac{1}{R_1} \; , \; \; \mathrm{r.} \; \; \mathrm{e.} \; \; R_{12} \leq \; R_1.$$

То же самое можно сказать про любую пару точек. Если резистор 4,7 кОм (местоположение которого мы ищем в схеме) включён между точками m и n, то

$$\frac{1}{R_{mn}} = \frac{1}{4.7 \; \text{кОм}} + \frac{1}{R_{4,7\text{ост}}} > \frac{1}{4.7 \; \text{кОм}}$$
 и $R_{mn} < 4.7 \; \text{кОм}$.

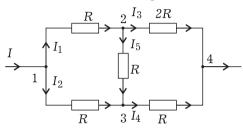
Присмотримся к результатам измерений с помощью мультиметра: только между двумя точками (3 и 4) схемы рис.1 сопротивление оказалось меньше, чем 4,7 кОм.

Вывод: резистор 4,7 кОм есть резистор R_4 (в нижней правой части схемы).

Замечание. В задаче 5 «Задания на дом» будьте осторожны: в ней имеется две пары точек, сопротивление между которыми наименьшего.

Теперь - снова теоретическая задача. Но задача не простая. Многие скажут, что здесь без «высшей физики» не обойтись. Попробуем.

(*) Задача 6. В несимметричной мостовой схеме сопротивления таковы: $R_1 = R_2 = R_4 = R_5 = R$, a $R_3 = 2R$. K схеме подведён ток I. Найти ток I_5 через «мост» между точками 2 и 3, а также полное сопротивление мостовой схемы между точками 1 и 4. (Все обозначения, как на рис. 1.)



Puc. 7

Решение. По закону Ома $\varphi_1 - \varphi_4 =$ $=IR_{\text{общ}}=\varphi_1-\varphi_2+\varphi_2-\varphi_4=I_1R+I_32R,$ откуда

$$R_{\text{обш}} = (I_1/I + 2I_3/I) R.$$
 (*)

Наша цель теперь – выразить токи в отдельных резисторах через ток I.

Потенциалы φ_1 , φ_2 и φ_3 в силу закона Ома удовлетворяют равенствам

$$\varphi_1 - \varphi_2 = I_1 R, \quad \varphi_1 - \varphi_3 = I_2 R,$$

 $\varphi_2 - \varphi_3 = I_5 R.$

Складывая 1-е и 2-е и вычитая 3-е, приходим к уравнению

$$I_1 R + I_5 R - I_2 R = 0,$$
 (A)

или проще

$$I_1 + I_5 - I_2 = 0. (1)$$

Потенциалы φ_2 , φ_3 и φ_4 удовлетворяют равенствам

$$\varphi_2 - \varphi_3 = I_5 R, \quad \varphi_2 - \varphi_4 = I_3 2 R,$$

$$\varphi_3 - \varphi_4 = I_4 R$$
.

Складывая 1-е и 2-е и вычитая 3-е, приходим к уравнению

$$I_5 R + I_4 R - I_3 2R = 0,$$
 (B)

или

$$I_5 + I_4 - 2I_3 = 0. (2)$$

(Уравнения (А-Б) выражают собой 2-й закон Кирхгофа для замкнутых контуров 1-2-3-1 и 2-4-3-2, не содержащих сторонних ЭДС; это для любителей «высшей физики».)

Токи удовлетворяют очевидным условиям:

$$I_1 + I_2 = I,$$
 (3)

$$I_1 = I_3 + I_5,$$
 (4)

$$I_4 = I_2 + I_5,$$
 (5)

$$I_3 + I_4 = I.$$
 (6)

Мы записали равенство сумм токов, входящих в узел и выходящих из него, для точек (узлов) 1, 2, 3 и 4. (В «высшей физике» их называют 1-ым законом Кирхгофа для узлов 1, 2, 3 и 4.) Мы получили 6 уравнений (1 – 6) с 5-ю неизвестными токами. (Одно уравнение лишнее: легко видеть, что, например, уравнение (6) получается как следствие уравнений (3 – 5).)

Решая систему уравнений (1-5), находим

$$I_1 = (5/11)I$$
, $I_2 = (6/11)I$, $I_3 = (4/11)I$, $I_4 = (7/11)I$.

И

$$I_5 = (1/11)I.$$
 (7)

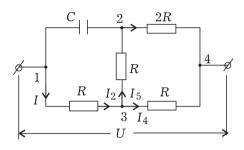
Подставляя значения I_1 и I_3 в формулу (*), находим общее сопротивление мостовой схемы

$$R_{\text{общ}} = (5/11 + 2 \times 4/11) R = (13/11) R.$$
 (8)

Формулы (7) и (8) решают поставленную задачу. Оказывается, всё не так сложно. На самом деле решение системы уравнений (1 – 5) несколько громоздко, но физики давно к этому привыкли. Ещё Галилей (1564 – 1642) писал, что Природа разговаривает с нами на языке математики.

(*) Задача 7. В несимметричной мостовой схеме рис. 1 сопротивления таковы: $R_1 = R_2 = R_4 = R_5 = R$, а $R_3 = 2R$. Сопротивление R_1 заменили конден-

сатором ёмкостью C (рис. 8). К схеме между точками 1 и 4 подведено постоянное напряжение U. Определить заряд на конденсаторе.



Puc. 8

Решение. $Q = C(\varphi_1 - \varphi_2)$. Ток через конденсатор не течёт, поэтому $I = I_2$. Представим разность потенциалов на обкладках конденсатора как сумму падений потенциала на двух сопротивлениях $R_2 = R$ и $R_5 = R$ (см. рис. 1):

$$\varphi_1 - \varphi_2 = (\varphi_1 - \varphi_3) + (\varphi_3 - \varphi_2),$$

 $\varphi_1 - \varphi_3 = I_2 R_2 = I R,$
 $\varphi_3 - \varphi_2 = I_5 R_5 = I_5 R.$

Ток I_5 вместе с током I_4 удовлетворяет двум соотношениям:

$$I = I_5 + I_4$$

И

 $I_5/I_4 = R_4/(R_5 + R_3) = R/(R + 2R) = 1/3,$ откуда получаем

$$I_4 = 3I/4, I_5 = I/4.$$

Тогда искомая разность потенциалов оказывается равной

$$\varphi_1 - \varphi_2 = IR + (I/4)R = (5/4)IR$$
.

Ток І легко находится:

$$I = U/R_{\text{OOIII}}$$
,

где

$$R_{06\text{III}} = R_2 + (R_5 + R_3) \times R_4/(R_5 + R_3 + R_4) =$$

= $R + 3R \times R/(3R + R) = (7/4)R$;

тогда

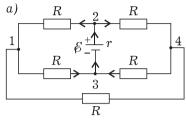
$$I = (4/7) U/R$$

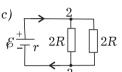
И

$$\varphi_1 - \varphi_2 = (5/7)U$$
.

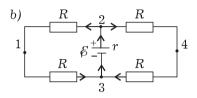
Окончательно получаем Q = (5/7)CU.

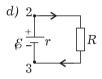
Задача 8. В симметричной мостовой схеме вместо резистора R_5 включили батарейку, ЭДС которой





равна \mathcal{E} , а внутреннее сопротивление батарейки равно r. Резистор $R_5 = R$ включили между точками 1 и 4 (рис. 9 a). Определить токи в каждом резисторе и ток через батарейку.



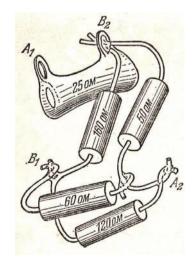


Puc. 9

Решение. В силу симметрии задачи потенциалы в точках 1 и 4 равны друг другу: $\varphi_1 - \varphi_4 = 0$, поэтому по закону Ома электрического тока в нижнем резисторе на рис. 9 a не будет, и этот резистор может быть удалён. См. далее рис. 9 b-d; цепоч-

ка упрощений схемы достаточно проста. В схеме рис. 9 d ток через батарейку равен $I_{\text{бат}} = \frac{\mathscr{E}}{r+R}$. Ток через резисторы на рис. 9b — вдвое меньше: в точке 3 ток $I_{\text{бат}}$ делится пополам.

Задание на дом

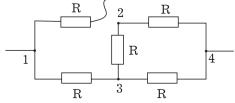


Puc. 10

ДЗ 1. Является ли показанная на рис.10 схема мостовой? Определите сопротивление между четырьмя парами точек: 1) A_1 и A_2 , 2) B_1 и B_2 , 3) A_1 и B_1 , а также 4) B_1 и A_2 .

Ответ. 65 Ом, 57,6 Ом, 82,6 Ом, 33,6 Ом.

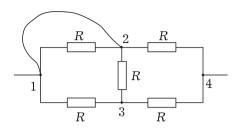
ДЗ 2. В мостовой схеме произошёл разрыв провода между точками



Puc. 11

1 и 2 (рис. 11). Определите сопротивление между точками 1 и 4.

Ответ. $R_{14} = 5R/3$.



Puc. 12

ДЗ 3. В симметричной мостовой схеме закоротили точки 1 и 2 (рис. 12). Определите сопротивление между точками 1 и 4.

Ответ. $R_{14} = 3R/5$.

ДЗ 4. В несимметричной мостовой схеме (см. рис.1) сопротивления резисторов таковы: $R_1 = R_2 = R_3 = R_5 = R$, а $R_4 = 3R$. К схеме подведён ток I. Повторите рассуждения Задачи 6 и покажите, что ток через перемычку точками 2 И между $I_5 = -(1/7)I$. Что означает отрицательность тока? Найдите сопротивление мостовой схемы между точками 1 и 4.

Ответ. $R_{14} = 9R/7 \approx 1.3 R$.

(*) ДЗ 5. Известно, что в мостовой схеме (см. рис. 1) использованы четыре резистора примерно по 12 Ом и ещё один резистор примерно 7 Ом, про который НЕ известно, в каком месте схемы он находится. Пытаются экспериментально с помощью мультиметра, используя его в качестве омметра, определить месторасположение этого резистора в схеме, не удаляя (не «выпаивая») резисторы. Измерения показали, что $R_{14} \approx 10.5 \, \text{Ом}$, $R_{12} \approx R_{13} \approx 7.4$ Om, $R_{24} \approx 6.7$ $R_{34} \approx 5.2$ Ом. Пользуясь этими экспериментальными данными, определите, где расположен резистор 7 Ом.

Ответ. $R_4 = 7$ Ом.

Калейдоскоп Калейдоскоп Калейдоскоп

«Джин однажды встретил тело»

Великий английский физик Джеймс Клерк Максвелл обладал великолепным врождённым чувством юмора, которое проявлялось во всём: в беседах, письмах, сочинённых им стихах. Ниже помещена его пародия на одно из сочинений знаменитого шотландского поэта Р. Бернса «Пробираясь до калитки...»:

> Джин однажды встретил тело В полной темноте. Джин легонько стукнул тело: Как оно? И где? Всё свою имеет меру, Можно всё решить. Можно, скажем, для примера, Путь определить. Джин однажды встретил тело В полной темноте. Куда оба полетели – Видели не все. Всем проблемам есть решенье Точное вполне. Жаль, что это приключенье Безразлично мне.