

Колесникова Софья Ильинична

Старший преподаватель кафедры высшей математики Московского физико-технического института (МФТИ), специалист Федеральной заочной физико-технической школы (ФЗФТШ) при МФТИ. Окончила Московский государственный университет (МГУ), имеет большой опыт работы со старшеклассниками, автор пособий «Интенсивный курс подготовки ЕГЭ», «Решение сложных задач ЕГЭ».

Выпускнику 2008-2009 гг.

Задания серии С в ЕГЭ вызывают у учителей и учащихся много вопросов. Нередко встречаются нетрадиционные формулировки заданий, когда даже успевающий учащийся не знает, с чего начать решать задачу. Есть задачи, которые практически невозможно решить в условиях экзамена школьными методами, но они допускают и вполне «простое» решение с помощью соотношения, про которое составители пишут: «догадаться до такого утверждения, конечно, нелегко — нужно сообразить. Зато после того, как оно уже сформулировано, доказать его не составляет труда». Это, без сомнения, верно. Но как догадаться?

В статье разбираются и обсуждаются различные способы решения одной задачи демонстрационного варианта $2009\,\mathrm{r}$. и некоторых заданий $2008\,\mathrm{r}$.

Цель нашей статьи — не догадываться, а попытаться соответствующие системы или совокупности научиться чётко выводить из условий задачи.

1. Надо ли упрощать условие задачи?

Пример 1. (ЕГЭ, 2009, демонстрационный вариант) Найдите все значения x, большие 1, при каждом из которых наибольшее из двух чисел

$$a = \log_2 x + 2\log_x 32 - 2$$
 и
 $b = 41 - \log_2^2 x^2$

больше, чем 5.

Ответ. $(1; 8) \cup (32; +\infty)$.

Первый способ (школьный).

Прочитав условие, учащиеся обычно записывают его так (конечно, не обязательно с помощью совокупности систем, а чаще рассматрива-

ют два случая отдельно):

$$\begin{cases} \log_2 x + 2\log_x 32 - 2 \ge 41 - \log_2^2 x^2, \\ \log_2 x + 2\log_x 32 - 2 > 5; \\ \left\{ 41 - \log_2^2 x^2 \ge \log_2 x + 2\log_x 32 - 2, \\ 41 - \log_2^2 x^2 > 5. \end{cases}$$

Теперь преобразуем заданные выражения:

$$a = \log_2 x + 2\log_x 32 - 2 =$$

$$= \log_2 x + \frac{2\log_2 32}{\log_2 x} - 2,$$

$$b = 41 - \log_2^2 x^2 = 41 - 4\log_2^2 x$$

и сделаем для удобства замену переменных $t = \log_2 x, t > 0$, тогда

$$a = t + \frac{10}{t} - 2 = \frac{t^2 - 2t + 10}{t}, \ b = 41 - 4t^2,$$

t > 0. Запишем условие задачи в новых переменных:

$$\begin{cases} \begin{cases} \frac{t^2 - 2t + 10}{t} \ge 41 - 4t^2, \\ \frac{t^2 - 2t + 10}{t} > 5; & \Leftrightarrow \\ \end{cases} \\ \begin{cases} 41 - 4t^2 \ge \frac{t^2 - 2t + 10}{t}, \\ 41 - 4t^2 > 5 \end{cases} \\ \Leftrightarrow \begin{cases} \begin{cases} 4t^3 + t^2 - 43t + 10 \ge 0, \\ (t - 5)(t - 2) > 0; \\ \end{cases} \\ \begin{cases} 4t^3 + t^2 - 43t + 10 \le 0, \\ (t + 3)(t - 3) < 0. \end{cases} \end{cases}$$

И сразу появляется настоящая и непреодолимая трудность — кубическое уравнение $4t^3 + t^2 - 43t + 10 = 0$ не решается, корни не находятся!

Что делать? Как решить неравенства?

Наиболее «упорные» попробуют исследовать уравнение. Обозначим левую часть уравнения

$$y(t) = 4t^3 + t^2 - 43t + 10.$$

Во-первых, видно, что один из корней — число отрицательное, т. к. $y(t) \underset{t \to -\infty}{\to} -\infty$, а y(0) = 10 > 0.

Если переписать уравнение в виде $4t^2\left(t+\frac{1}{4}\right)=43\left(t-\frac{10}{43}\right)$, то ясно, что при $-\frac{1}{4}\!<\!t<\!\frac{10}{43}\!<\!\frac{1}{4}$ корней нет, т. к. левая и правая части имеют разные знаки.

Вычислим
$$y\bigg(\frac{1}{4}\bigg) = \frac{2}{4^2} - \frac{43}{4} + 10,$$
 т. е. $y\bigg(\frac{1}{4}\bigg) < 0$, а так как $y(0) > 0$, то
$$\frac{10}{43} < t_2 < \frac{1}{4}.$$

Но ведь на экзамене учащийся не поверит такому результату, потому что дальнейшее уточнение, вопервых, приводит к сложным вычислениям, а, во-вторых, неизвестно, найдётся ли корень (в школе привыкли все-таки решать кубическое уравнение!). Большинство учащихся «опустят руки» и получат за неё 0 — ведь им неведомо, что решение задачи не зависим от решения этого неравенства.

Более настойчивые попробуют определить положение третьего корня, который заведомо существует, т. к.

$$y\left(\frac{1}{4}\right) < 0, \ y(t) \underset{t \to +\infty}{\longrightarrow} +\infty.$$

Вычислим значения в следующих «хороших» точках: $y(2) < 0, \ y(3) < 0,$ y(4) > 0. О! Знак сменился, значит, на (3; 4) имеется ещё один корень t_3 : $3 < t_3 < 4$ (дальше функция

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi}{6}$$

$$y(t) = 4t\left(t^2 - \frac{43}{4}\right) + t^2 + 10 =$$

$$= 4t\left(t - \frac{\sqrt{43}}{2}\right)\left(t + \frac{\sqrt{43}}{2}\right) + t^2 + 10$$

монотонно и неограниченно возрастает).

Теперь можно записать

$$4t^3 + t^2 - 43t + 10 = 0 \Leftrightarrow$$

 $\Leftrightarrow (t - t_1)(t - t_2)(t - t_3) = 0,$

$$\Leftrightarrow (t-t_1)(t-t_2)(t-t_3) = 0$$

и стало ясно, как решать кубические неравенства (на взгляд автора, это совсем не школьное решение проблемы):

$$\begin{cases} 4t^3 + t^2 - 43t + 10 \ge 0, \\ t \in (0; 2) \cup (5; +\infty); \\ 4t^3 + t^2 - 43t + 10 \le 0, \\ 0 < t < 3 \end{cases} \Leftrightarrow \begin{cases} \{t \in [0; t_2] \cup [t_3; +\infty), \\ t \in (0; 2) \cup (5; +\infty); \\ t \in [t_2; t_3], \\ t \in (0; 3) \end{cases} \Leftrightarrow \begin{cases} t \in (0; t_2] \cup (5; +\infty), \\ t \in [t_2; 3) \end{cases} \Leftrightarrow t \in (0; 3) \cup (5; +\infty).$$

Видно, что решение определено решением лишь вторых неравенств, так как

$$\begin{bmatrix} t \in (0; 2) \cup (5; +\infty), \\ t \in (0; 3) \end{bmatrix}$$

$$\Leftrightarrow t \in (0; 3) \cup (5; +\infty)!$$

Но далеко не всем это было ясно из условий задачи!

В старых переменных:

$$\begin{bmatrix} 0 < \log_2 x < 3, \\ \log_2 x > 5 \end{cases} \Leftrightarrow x \in (1; 8) \cup (32; +\infty).$$

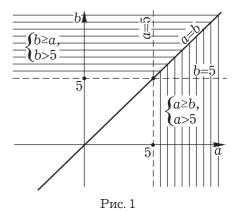
Ответ.
$$(1; 8) \cup (32; +\infty)$$
.

Второй способ (совсем не школьный).

Теперь запишем на языке неравенств всё, что мы делали:

$$\begin{cases} a \ge b, \\ b > 5; \\ b \ge a, \\ a > 5. \end{cases}$$

Решить задачу - это значит решить совокупность двух систем неравенств. Нанесём множество решений совокупности на плоскость (a; b) - рис. 1. Множество решений заштрихованная часть.



Упрощение совокупности состоит в том, что эту часть плоскости можно описать по-другому:

$$\begin{cases} a \ge b, \\ b > 5; \\ b \ge a, \\ a > 5 \end{cases} \Leftrightarrow \begin{bmatrix} a > 5, \\ b > 5, \\ a > 5 \end{cases}$$

и задача сводится к решению совокупности двух неравенств вместо совокупности систем, причём исчезли как раз те неравенства, которые не решались. Такую совокупность успевающие учащиеся уж точно могут решить! Итак,

$$\begin{bmatrix} \frac{t^2 - 2t + 10}{t} > 5, & \Leftrightarrow \\ \frac{t^2 - 7t + 10}{t} > 0, & \Leftrightarrow \\ 41 - 4t^2 > 5 & \end{cases} \Leftrightarrow \begin{bmatrix} t^2 - 7t + 10 > 0, \\ t^2 < 9 & \end{cases} \Leftrightarrow \begin{bmatrix} (t - 5)(t - 2) > 0, \\ (t + 3)(t - 3) < 0 & \Leftrightarrow \\ \Leftrightarrow \begin{bmatrix} t \in (0; 2) \cup (5; +\infty), \\ t \in (0; 3) & \Leftrightarrow \\ t \in (0; 3) \cup (5; +\infty), \end{cases} \Leftrightarrow$$

или в старых переменных

$$\begin{bmatrix} 0 < \log_2 x < 3, \\ \log_2 x > 5 & \Leftrightarrow x \in (1; 8) \cup (32; +\infty). \end{bmatrix}$$

Ответ.
$$(1; 8) \cup (32; +\infty)$$
.

Замечание. «Аналогичная» ситуация была и в 2005 г.

Пример 2. (ЕГЭ, 2005) Найдите все значения a, при каждом из которых наибольшее из двух чисел $b=2^{3-a}-4^{-a}-9$ и $c=2^{3+a}+4^a-3$ меньше 6.

Otbet.
$$a \in \left(-\infty; \log_2 \frac{1}{5}\right) \cup \left(\log_2 \frac{1}{3}; 0\right)$$
.

Это задание отличается от задания 2009 г. двумя моментами.

- 1. При решении школьным методом получается все-таки «решабельное» возвратное уравнение, но с «жуткими» иррациональными корнями.
- 2. В отличие от предыдущей задачи, здесь совокупность систем сводится не к совокупности, а к системе двух неравенств рис. 2.

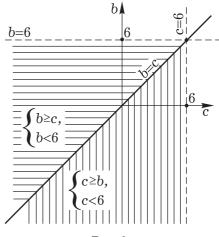


Рис. 2

$$\begin{cases} b \le c, \\ c < 6; \\ c \le b, \end{cases} \Leftrightarrow \begin{cases} b < 6, \\ c < 6. \end{cases}$$

Решите задачу самостоятельно.

Замечание. «Прародительницей» задания демоверсии 2009 и заданий 2005 г., на взгляд автора, является следующая задача.

Пример 3. (МГУ, 1994, мехмат, май) Найдите все значения x, при каждом из которых наименьшее из двух чисел $\log_2\left(5\cdot 2^{2x+2}-2^{x+2}+1\right)$ и 3x+5 отрицательно.

Ответ.
$$\left(-\infty; -\frac{5}{3}\right)$$
.

Эта задача шла четвёртой из шести предложенных в варианте вступительного экзамена на мехмат, рассчитанного на 4 астрономических часа. В отличие от предыдущей, эта задача решается стандартным школьным методом. Решите её самостоятельно.

Итак, в условиях экзамена решить задачу демонстрационного варианта

школьным методом практически нереально – поэтому условие надо обязательно упростить.

Что касается второго метода, то тут может получиться любопытная ситуация. Так как составители в своей инструкции не требуют объяснений, откуда появляется совокупность неравенств, то учащиеся сначала решают неравенства

$$\frac{t^2 - 2t + 10}{t} > 5, \quad 41 - 4t^2 > 5,$$

а потом кто-то объединяет решения (угадал в данной задаче!), а кто-то выписывает пересечение (не угадал!) — они логично рассуждают, что решения неравенств должны быть как-то связаны между собой!

2. Решение одного неравенства

Пример 4. Найдите все значения a, при которых неравенство

$$\frac{\left(\log_2 x + 3\sqrt{2}\log_x 2 - 5\right) - a}{a - \left(2\sin\sqrt{x - 4} - 3\right)} \le 0$$

не имеет решений.

Ответ.
$$\left[-1; \ 2\sqrt{3\sqrt{2}} - 5 \right)$$
.

Первый способ решения задачи.

В скобке знаменателя из двух синусов вычитается 3 — это не очень удобно сравнивать. Более естественно изучать скобку вида $\left(\sin\sqrt{x-4}-b\right)$, знак которой можно определить. Перепишем неравенство:

$$\begin{split} &\frac{\left(\log_2 x + 3\sqrt{2}\log_x 2 - 5\right) - a}{a - \left(2\sin\sqrt{x - 4} - 3\right)} \leq 0 \Leftrightarrow \\ &\Leftrightarrow \frac{\left(\log_2 x + \frac{3\sqrt{2}}{\log_2 x}\right) - 5 - a}{(a + 3) - 2\sin\sqrt{x - 4}} \leq 0 \Leftrightarrow \\ &\Leftrightarrow \frac{\left(\log_2 x + \frac{3\sqrt{2}}{\log_2 x}\right) - 5 - a}{\frac{a + 3}{2} - \sin\sqrt{x - 4}} \leq 0. \end{split}$$

Ещё, для «красоты», удобно вместо a ввести $\frac{a+3}{2}=b\Leftrightarrow a=2b-3$. Тогда неравенство будет выглядеть более компактно:

$$\frac{\left(\log_2 x + \frac{3\sqrt{2}}{\log_2 x}\right) - 5 - a}{\frac{a+3}{2} - \sin\sqrt{x-4}} \le 0 \iff \frac{\frac{a+3}{2} - b}{\Leftrightarrow}$$

$$\frac{\frac{a+3}{2} - b}{\Leftrightarrow} \left(\log_2 x + \frac{3\sqrt{2}}{\log_2 x}\right) - 2(b+1)$$

$$\Leftrightarrow \frac{\frac{a+3}{2} - b}{\Leftrightarrow} \left(\log_2 x + \frac{3\sqrt{2}}{\log_2 x}\right) \le 0.$$

Значит, надо найти все значения a, при которых неравенство имеет решение, а затем в ответе записать не их, а наоборот, все остальные. Но мы поступим по-другому.

Переформулируем условие задачи. Будем искать «все значения *a*, при которых неравенство противоположного смысла

$$\frac{\left(\log_2 x + 3\sqrt{2}\log_x 2 - 5\right) - a}{a - \left(2\sin\sqrt{x - 4} - 3\right)} > 0,$$

или равносильное ему неравенство

$$\frac{\left(\log_2 x + \frac{3\sqrt{2}}{\log_2 x}\right) - 2(b+1)}{b - \sin\sqrt{x-4}} > 0,$$

выполнено для всех x из ОДЗ».

Знаменатель выглядит «попроще» — поэтому можно сначала исследовать его.

- 1. Очевидно, что если $b \ge 1$, то $b \sin \sqrt{x 4} > 0$ при всех x из ОДЗ.
 - 2. Если $b \le -1$, то

$$b-\sin\sqrt{x-4}<0$$

при всех x из ОДЗ.

3. Если же -1 < b < 1, то найдутся x, при которых $b - \sin \sqrt{x-4} > 0$ и при которых $b - \sin \sqrt{x-4} < 0$.

Итак, знаменатель положителен при всех x из ОДЗ npu $b \ge 1$ и отрицателен при всех x из ОДЗ npu $b \le -1$. Отсюда следует, что теперь надо проверить, при каких $b \ge 1$ числитель положителен при всех x из ОДЗ и при каких $b \le -1$ числитель отрицателен при всех x из ОДЗ.

Первый способ исследования знака числителя. Составители сами «подсказали» исследовать скобку (*не*

содержащую параметра!) в числителе с помощью неравенства Коши: для любых положительных a и b верно, что $a+b \ge 2\sqrt{ab}$, причём равенство выполнено тогда и только тогда, когда a=b (которое в нашем случае применимо, т. к. $\log_2 x \ge 2 > 0$). Имеем:

$$\log_2 x + \frac{3\sqrt{2}}{\log_2 x} \ge 2\sqrt{\log_2 x \cdot \frac{3\sqrt{2}}{\log_2 x}} = 2\sqrt{3\sqrt{2}}$$

для любого значения x, при котором $\log_2 x > 0$, причём равенство выполнено тогда и только тогда, когда

$$\begin{cases} \log_2 x > 0, \\ \log_2 x = \frac{3\sqrt{2}}{\log_2 x} \Leftrightarrow \log_2 x = \sqrt{3\sqrt{2}}. \end{cases}$$

Заметим, что $\sqrt{3\sqrt{2}} > 2$ – это значит, что в ОДЗ равенство имеет место.

1) Отсюда следует, что если выполнены два условия

$$\begin{cases} 2b + 2 < 2\sqrt{3\sqrt{2}} \iff b < \sqrt{3\sqrt{2}} - 1, \iff b \ge 1 \end{cases}$$

$$\Leftrightarrow 1 \le b < \sqrt{3\sqrt{2}} - 1,$$

то числитель и знаменатель положительны при любом x из ОДЗ. Следовательно, неравенство

$$\frac{\left(\log_2 x + \frac{3\sqrt{2}}{\log_2 x}\right) - (2b+2)}{b - \sin\sqrt{x-4}} > 0$$

выполнено в ОДЗ при $b \in [1; \sqrt{3\sqrt{2}} - 1]$.

Возвращаемся к заданному параметру:

$$\begin{split} &1 \leq b < \sqrt{3\sqrt{2}} - 1 \Leftrightarrow 1 \leq \frac{a+3}{2} < \\ &< \sqrt{3\sqrt{2}} - 1 \Leftrightarrow a \in \left\lceil -1; 2\sqrt{3\sqrt{2}} - 5 \right\rceil. \end{split}$$

2) Если $b \le -1$, то знаменатель отрицателен в ОДЗ, а так как при этом $2b+2<2\sqrt{3\sqrt{2}}$, то числитель положителен — неравенство

$$\frac{\left(\log_2 x + \frac{3\sqrt{2}}{\log_2 x}\right) - \left(2b + 2\right)}{b - \sin\sqrt{x - 4}} > 0$$

не имеет решений.

При остальных значениях *b* знаменатель, например, не сохраняет знак.

Ответ.
$$\left[-1; 2\sqrt{3\sqrt{2}} - 5 \right)$$
.

Второй способ исследования знака числителя. Конечно, подкупает то, что в числителе практически стоит квадратный трёхчлен

$$\log_2^2 x - (2b + 2)\log_2 x + 3\sqrt{2},$$

так как

$$\frac{\left(\log_2 x + \frac{3\sqrt{2}}{\log_2 x}\right) - \left(2b + 2\right)}{b - \sin\sqrt{x - 4}} \le 0 \overset{OД3}{\Leftrightarrow}$$

$$\overset{OД3}{\Leftrightarrow} \frac{\log_2^2 x - 2(b + 1)\log_2 x + 3\sqrt{2}}{b - \sin\sqrt{x - 4}} \le 0.$$

Однако его исследование осложняет присутствие параметра и «плохой» дискриминант $\frac{D}{4} = \left(b+1\right)^2 - 3\sqrt{2}$.

Поэтому попробуем обойти исследование дискриминанта в «явном» виде.

1) Так как знаменатель в неравенстве

$$\frac{\left(\log_2 x + \frac{3\sqrt{2}}{\log_2 x}\right) - \left(2b + 2\right)}{b - \sin\sqrt{x - 4}} > 0 \text{ при } b \ge 1$$

положителен в ОДЗ, то рассмотрим сначала и числитель при этих же b. Рассмотрим неравенство

$$\log_2^2 x - (2b+2)\log_2 x + 3\sqrt{2} > 0 \Leftrightarrow$$
$$\Leftrightarrow \log_2 x \left(\log x - (2b+2)\right) > -3\sqrt{2}.$$

Для удобства сделаем замену переменных $\log_2 x = t, t \ge 2$ и перепишем неравенство в виде системы:

$$\begin{cases} t \ge 2, \\ t(t - (2b + 2)) > -3\sqrt{2}. \end{cases}$$

Построим эскиз параболы y = t(t-2(b+1))

(рис. 3). Вершина находится в точке $t=b+1\geq 2$. Видно, что неравенство выполнено при всех $t\geq 2$, если

$$\begin{split} y_{\text{\tiny Bepiii}} > & -3\sqrt{2} \Leftrightarrow \\ \Leftrightarrow & \big(b+1\big) \big(\big(b+1\big) - 2\big(b+1\big) \big) > \\ > & -3\sqrt{2} \Leftrightarrow \big(b+1\big)^2 < 3\sqrt{2} \stackrel{b+1 \geq 2}{\Leftrightarrow} \\ & \stackrel{b+1 \geq 2}{\Leftrightarrow} 1 \leq b < \sqrt{3\sqrt{2}} - 1, \end{split}$$

т. е. для этих b дробь положительна в

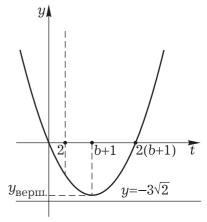


Рис. 3

ОДЗ, или, переходя к заданному параметру, получаем, что

$$1 \le \frac{a+3}{2} < \sqrt{3\sqrt{2}} - 1 \Leftrightarrow$$
$$\Leftrightarrow a \in \left[-1; 2\sqrt{3\sqrt{2}} - 5 \right].$$

2) При $b \le -1$ знаменатель отрицателен в ОДЗ, поэтому рассмотрим неравенство, при котором числитель тоже отрицателен:

$$\begin{cases} t \ge 2, \\ t(t-2(b+1)) + 3\sqrt{2} < 0 \Leftrightarrow \\ \Leftrightarrow t(t-2(b+1)) < -3\sqrt{2}. \end{cases}$$

Построим при этих b параболу $y=t\left(t-2\left(b+1\right)\right),\ b+1\leq 0.$

Видно, что y(t)>0 при всех t>0 и нет таких t, для которых неравенство $t(t-2(b+1))<-3\sqrt{2}$ выполнено – рис. 4.

При остальных значениях b знаменатель, например, не сохраняет знак.

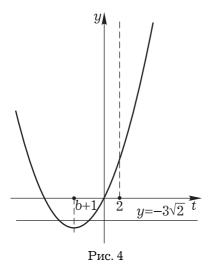
Ответ.
$$\left[-1; 2\sqrt{3\sqrt{2}} - 5 \right)$$
.

Второй способ решения задачи.

Составители на что-то намекают, располагая параметр a в неравенст-

ве
$$\frac{\left(\log_2 x + 3\sqrt{2}\log_x 2 - 5\right) - a}{a - \left(2\sin\sqrt{x - 4} - 3\right)} \le 0$$
 имен-

но так, как он расположен – вне скобок и с разными знаками в числителе и знаменателе.



Будем решать неравенство «лоб». Обозначим для удобства

$$f(x) = \log_2 x + 3\sqrt{2}\log_x 2 - 5,$$

$$g(x) = 2\sin\sqrt{x - 4} - 3.$$

Тогда неравенство примет вид:

$$\frac{f(x)-a}{a-g(x)} \le 0 \Leftrightarrow \begin{cases} f(x) \le a, \\ g(x) < a; \\ f(x) \ge a, \\ g(x) > a. \end{cases}$$

Так как мы уже показали, что $\log_2 x + 3\sqrt{2}\log_x 2 \overset{OД3}{\geq} 2\sqrt{3\sqrt{2}},$ то:

1) неравенство

$$f(x) \le a \Leftrightarrow \log_2 x + 3\sqrt{2}\log_x 2 - 5 \le a \Leftrightarrow$$

 $\Leftrightarrow \log_2 x + 3\sqrt{2}\log_x 2 \le a + 5$

имеет решение, если

$$a+5 \ge 2\sqrt{3\sqrt{2}} \iff a \ge 2\sqrt{3\sqrt{2}} -5;$$

2) неравенство

$$f(x) \ge a \Leftrightarrow \log_2 x + 3\sqrt{2}\log_x 2 - 5 \ge$$

 $\geq a \Leftrightarrow \log_2 x + 3\sqrt{2}\log_x 2 \geq a + 5$

имеет решение, если $a \in R$, так как

$$2\sqrt{3\sqrt{2}} - 5 \le \log_2 x + 3\sqrt{2}\log_x 2 - 5 < +\infty.$$

Теперь оценим знаменатель:

1) неравенство

$$g(x) < a \Leftrightarrow 2\sin\sqrt{x-4} - 3 < a \Leftrightarrow \sin\sqrt{x-4} < \frac{a+3}{2}$$

имеет решение, если

$$\frac{a+3}{2} \ge -1 \Leftrightarrow a \ge -5;$$

2) неравенство

$$g(x) > a \Leftrightarrow 2\sin\sqrt{x-4} - 3 > a \Leftrightarrow$$

$$\Leftrightarrow \sin\sqrt{x-4} > \frac{a+3}{2}$$

имеет решение, если

$$\frac{a+3}{2} < 1 \Leftrightarrow a < -1.$$

Итак, система $\begin{cases} f(x) \leq a, \\ g(x) < a \end{cases}$ имеет

решение, если

$$\begin{cases} a \ge 2\sqrt{3\sqrt{2}} - 5, \Leftrightarrow a \ge 2\sqrt{3\sqrt{2}} - 5; \\ a \ge -5 \end{cases}$$

система
$$\begin{cases} f(x) \ge a \\ g(x) > a \end{cases}$$
 имеет решение,

если
$$\begin{cases} a \in R, \\ a < -1 \end{cases} \Leftrightarrow a < -1.$$
 Значит, наше

неравенство имеет решение, если

$$a \in (-\infty; -1) \cup \left[2\sqrt{3\sqrt{2}} - 5; +\infty\right],$$

и не имеет решений, если

$$a \in \left[-1; 2\sqrt{3\sqrt{2}} - 5\right).$$

Ответ.
$$\left[-1; 2\sqrt{3\sqrt{2}} - 5 \right)$$
.

Третий способ решения задачи (практически «графический»).

Перепишем неравенство несколько по-другому:

$$\frac{\left(\log_2 x + 3\sqrt{2}\log_x 2 - 5\right) - a}{a - \left(2\sin\sqrt{x - 4} - 3\right)} \le 0 \Leftrightarrow$$

$$\Leftrightarrow \frac{\left(\log_2 x + 3\sqrt{2}\log_x 2 - 5\right) - a}{\left(2\sin\sqrt{x - 4} - 3\right) - a} \ge 0.$$

Рассмотрим функции

$$f(x) = \log_2 x + 3\sqrt{2}\log_x 2 - 5$$
,

$$g(x) = 2\sin\sqrt{x-4} - 3,$$

тогда неравенство примет вид

$$\frac{f(x)-a}{g(x)-a} \ge 0.$$

Строить эскизы графиков этих функций в условиях экзамена, по мнению автора, нереально. Но для решения этой задачи и *не нужно* (только как школьнику, если он не «вундеркинд», а просто умный, догадаться до этого?).

Задача быстро решается потому, что на самом деле решение не зависит от самих графиков, — важно лишь то, что функции непрерывны, можно найти множества их значений, и графики функций не пересекаются.

Так как

$$-5 \le 2\sin\sqrt{x-4} - 3 \le -1,$$

то множеством значений g(x) является отрезок [-5;-1].

Так как

$$\log_2 x + 3\sqrt{2}\log_x 2 \equiv \log_2 x + \frac{3\sqrt{2}}{\log_2 x} \overset{O\mathcal{A}3}{\geq}$$

$$\overset{OД3}{\geq} 2 \sqrt{\log_2 x \cdot \frac{3\sqrt{2}}{\log_2 x}} = 2\sqrt{3\sqrt{2}}\text{, то}$$

$$\begin{split} \log_2 x + 3\sqrt{2} \log_x 2 - 5 &\geq 2\sqrt{3\sqrt{2}} - 5 > -1. \\ & \left(2\sqrt{3\sqrt{2}} - 5 \vee -1 \Leftrightarrow 2\sqrt{3\sqrt{2}} \vee 4 \Leftrightarrow \right. \\ & \Leftrightarrow 4 \cdot 3\sqrt{2} \vee 16 \Leftrightarrow 3\sqrt{2} \vee 4 \Leftrightarrow \\ & \Leftrightarrow 18 > 16 \Leftrightarrow 2\sqrt{3\sqrt{2}} - 5 > -1. \end{split}$$

Значит, множеством значений f(x) является промежуток

$$\left[2\sqrt{3\sqrt{2}-5}; +\infty\right).$$

Итак

$$\begin{cases} f(x) \ge 2\sqrt{3\sqrt{2}} - 5 > -1, \\ -5 \le g(x) \le -1. \end{cases}$$

Это значит, что графики функций не пересекаются.

Теперь видно, что если

$$-1 \le a < 2\sqrt{3\sqrt{2}} - 5,$$

то $f(x) \ge a$, а g(x) < a, т. е. неравен-

ство
$$\frac{f(x)-a}{g(x)-a} \ge 0$$
 не имеет решений.

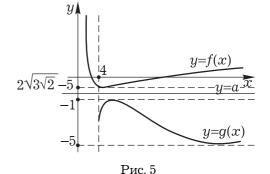
При всех остальных a неравен-

ство
$$\frac{f(x)-a}{g(x)-a} \ge 0$$
 имеет решение.

Действительно, тогда:

- 1) либо $a>2\sqrt{3\sqrt{2}}-5$ и g(x)< a для всех $x\in OJ3$, а неравенство f(x)< a имеет решение $\Big(\text{т. к. } f(x) \Big)$ непрерывна и $E(f)=\Big[2\sqrt{3\sqrt{2}};+\infty \Big) \Big);$
- 2) либо a<-1 и f(x)>a для всех $x\in O$ ДЗ, а неравенство g(x)>a имеет решение (т. к. g(x) непрерывна и E(g)=[-5;-1]).

Это хорошо видно на рис. 5 (можно нарисовать произвольные кривые, обладающие этим свойством в ОДЗ).



Ответ.
$$\left[-1; 2\sqrt{3\sqrt{2}} - 5 \right)$$
.

Продолжение следует.